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Fig. S1, related to Figure 2: Flow diagram of CHAMP. Three incremental complexities 

of fit are possible, with the best fits found at each stage using 2 minimisation.  
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Fig. S2, related to Figure 4: A Minimisation of 2 for surface fit, as described in Figure 

S1, for the distributions shown in Figure 4. B Scatter plot of a and aw for seven 

independent replicate nanoES spectra (red) of the polydisperse protein B-crystallin. The 

data are tightly clustered, with the standard deviations (error bars) less that 10% of the 

mean in both dimensions. 
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S1 CHAMP Model 

For specific application to sHSPs see Experimental Procedures. Calculated mass spectra 

of a heterogeneous ensemble of protein complexes are generated in silico using the model 

described below. The resulting spectra are shown to be a function of the overall mass of 

the complex under consideration, and three oligomer-independent parameters that are 

optimized for each individual spectrum as discussed in the text. In the following, the 

physical origin of these individual parameters is described, and we demonstrate how they 

propagate through our model. 

If we consider a binary complex of the form PaP’b, where P and P’ represent two 

separate proteins (in the present work sHSP and target), its intrinsic ‘sequence’ mass, MS, 

is simply given by  

'),( PPS bMaMbaM   

[Eqn. S1] 

where MP and MP’ are the masses derived from the amino-acid composition of the two 

protein components. The effective mass, ME, of protein assemblies observed 

experimentally in nanoES mass spectra typically have a small positive deviation from 

that calculated from the sequence due to the binding of buffer ions and solvent molecules 

(McKay, et al., 2006), such that  

ASE MMbaM ),(  

[Eqn. S2] 
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where MA is the additional mass due to these adducts. It stands to reason that the mass of 

adducts, both specific and non-specific, will be proportional to the exposed surface area 

of the protein oligomers, which has been empirically shown to be proportional to MS
0.76 

(Miller, et al., 1987). Therefore we implement 

76.0),,( SSE QMMQbaM   

[Eqn. S3] 

where Q is a parameter that is optimized for each individual spectrum to best account for 

the binding of adducts to all complexes. 

The average charge state, ZA, populated by a protein is approximately related, by 

considerations of the Rayleigh limit, by a square root relationship to its mass (de la Mora, 

2000; Kebarle and Verkerk, 2010). The same form has been shown to apply to protein 

complexes (Heck and van den Heuvel, 2004; Kaltashov and Mohimen, 2005), with a 

relationship of ZA = 0.0467M0.533 providing the best fit to the combined data sets (Stengel, 

et al., 2010). The variations in internal diameter between different emitters (Hernández 

and Robinson, 2007) leads to small fluctuations in the average protein charge states 

observed in nanoESI mass spectra (Li and Cole, 2003). Correspondingly, the average 

charge of a single complex is here modeled as  

FMQFbaZ EA  533.00467.0),,,(  

[Eqn. S4] 

where F is a parameter optimized for each individual mass spectrum to best account for 

charge-state fluctuations across all complexes under consideration. When the complex 
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under consideration populates a single conformation, the distribution of charge states 

around ZA is well approximated by a Gaussian distribution (Dobo and Kaltashov, 2001). 

The intensity of individual charge states of a given complex will therefore be given by 
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[Eqn. S5] 

where ZW  reflects the width of the charge state distribution. This normalisation ensures 

that the overall sum over all charge states formed by our oligomers will be equal to unity. 

The overall intensity of peaks reported by the mass spectrometer will be a function of the 

detector efficiency DE, which varies with mass-to-charge ratio: 
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[Eqn. S6] 

where AO is the open area of the MCP detector, and VA is the accelerating voltage (Fraser, 

2002). The overall detected signal intensity of a complex in a charge state z will therefore 

be  

ECWAOD DWZVQFAzbaW ),,,,,,,(  

 [Eqn. S7] 

Each charge state gives rise to an approximately Gaussian peak in the overall mass 

spectrum (McKay, et al., 2006), centred on ME/z. The peak width is given by  
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PW (a, b, z,Q, R)  ME
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[Eqn. S8] 

where the parameter R accommodates the mass-to-charge-dependence of peak width 

(McKay, et al., 2006), a parameter optimized for each individual mass spectrum. At any 

given mass-to-charge ratio x the contribution to the signal intensity S from a complex in 

charge state z will be 
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[Eqn. S9] 

The overall signal SC coming from all charge states of a given complex at a measured 

mass-to-charge ratio x is obtained by summing over all charge states 
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[Eqn. S10] 

Considering the total solution concentration of a particular oligomer as Cab, the total 

signal at a given x is given by 
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[Eqn. S11] 

These above equations therefore provide a means for generating mass spectra for 

candidate distributions of protein complexes. In CHAMP this is implemented as a 
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function of only three variable oligomer-independent parameters, F, Q and R, with AO, VA 

and ZW kept constant, see main text. As such the challenge therefore becomes to employ 

Eqn. S11 to determine the relative abundances of the individual complexes which 

contribute to a given experimental mass spectrum.  

 

S2 CHAMP fitting 

To obtain the best fit between calculated and experimental mass spectra the set of 

oligomer concentrations Cab, as well as the spectrum parameters F, Q and R, are obtained 

by CHAMP that minimize the pseudo-2 function 

  
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[Eqn. S12] 

where there are N experimentally recorded m/z data-points. In all cases, Levenberg-

Marquardt minimization methods are used, and the maximum intensity of the 

experimental spectrum Sexp and calculated spectrum ST were both set to 100.  

CHAMP has three levels of complexity (termed ‘surface’, ‘set’, and ‘free’ fits) of 

sequentially increasing effective resolution, but at the expense of correspondingly more 

fitting parameters (Fig. S1). As with any case where experimental data is compared to a 

model, increasing the number of fitting parameters will result in lower 2 and 

corresponding better fit. F-statistics can then be calculated to estimate whether the overall 

reduction in 2 incurred by introducing an additional free parameter can be statistically 
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justified. As discussed in the text, our finding here is that the appropriate complexity of 

model, unsurprisingly, depends on the effective resolution of the experimental data. 

 

Surface Fit: A simple candidate for the distribution of oligomers is obtained by 

considering their concentrations as a two-dimensional Gaussian function: 
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[Eqn. S13] 

which is parameterized by four fitting parameters, a0, aW, b0 and bW. In the case of 

sHSPa:targetb complexes here, Eqn. S13 was found to be an insufficient model to fit the 

experimental data. Motivated by our previous study (Stengel, et al., 2010), we therefore 

established the surface fit instead as the slightly more complex form in which the 

concentration of complexes at a given a to scale as a Gaussian, and the distribution of 

complexes at a given b to vary by a skewed Gaussian (Fig. S1), such that 
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[Eqn. S14] 

Such a distribution is parameterized by five parameters a0, aW, b0, bW and a ‘skew’ 

parameter, . The inclusion of the parameters F, Q and R stemming from the model (see 

S1) means therefore that the surface fit employs a total of 8 different fitting parameters.  
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Blind minimization of Eqn. S12 with Eqn. S14 from random starting parameters with 

steepest descent algorithms was found to converge on a vast range of solutions of widely 

varying quality of fit, demonstrating a rugged 2 surface. To increase the likelihood that it 

finds a global rather than local 2 minimum, CHAMP performs a grid search at fixed 

values of a0 and b0 and steepest descent of the remaining parameters. This approach was 

found to be a robust method for approaching the global minimum 2 of the surface fit.  

 

Set Fit: The next level of complexity is reached by separating the two-dimensional 

skewed Gaussian distribution obtained from the surface fit into a set of independent one-

dimensional skewed Gaussian ‘slices’, one for each (integer) value of b (Fig. S1), each of 

the form 
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[Eqn. S15] 

Each ‘slice’ is defined by parameters, and therefore the total number of free parameters 

describing the distribution is given by (4×B)-1, where B is the total number of different 

stoichiometries of P’ considered. The subtraction of 1 degree of freedom reflects the way 

the spectra are normalized.  
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Free fit: The highest level of complexity is represented by a distribution in which the 

concentration of each species PaP’b is considered independently (Fig. S1). This is 

implemented within CHAMP by taking the result of the set fit and varying each 

concentration Cab independently. It is important to note that, because steepest descent 

minimization is used, both the set and free fits are guided by the initial grid-searching 

performed to generate the surface fit. 

 

Uncertainties: To test the reproducibility of CHAMP for interpreting the spectra of 

polydisperse ensembles we interrogated a series of seven nanoES replicates obtained for 

the sHSP B-crystallin. This protein populates a Gaussian-like distribution of in excess 

of 30 oligomeric states detectable at equilibrium (Baldwin, et al., 2011). Employing 

CHAMP to analyse these spectra (b = 0), allows us to extract the reproducibility of the 

centroid a, and width aW of the distribution for a series of independent replicates (Fig. 

S2B). We find the procedure to be very reproducible, with standard deviations in a and 

aW of 3.7% and 9.5% of the mean, respectively. 

Furthermore, using the minimum values 2
min of the pseudo-2 function defined above 

(Eqn. S12), we can estimate the corresponding values of uncertainty  on each data-

point from 
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[Eqn. S16] 
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where the degrees of freedom, d, is the difference between the number of independent 

experimental measurements and the number of free parameters of the model, and by 

noting that if we have an optimally fitting model, the overall reduced-2 will be equal to 

unity. The value of  using the set fit was generally found to be on the order of 2%, 

supporting the notion that the models used are giving reasonable reproductions of our 

experimental data.  
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